doi: 10.17586/2226-1494-2025-25-2-199-211


УДК 535.372: 539.196: 539.349

Синтез и исследование структуры и свойств фотокаталитических нанокомпозитов системы Cu/ZnO-ZnCr2O

Евстропьев С.К., Шелеманов А.А., Никоноров Н.В., Караваева А.В., Дукельский К.В., Полищук Г.С., Гаврилова М.А., Портнова К.А., Багров И.В.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования:
Евстропьев С.К., Шелеманов А.А., Никоноров Н.В., Караваева А.В., Дукельский К.В., Полищук Г.С., Гаврилова М.А., Портнова К.А., Багров И.В. Синтез и исследование структуры и свойств фотокаталитических нанокомпозитов системы Cu/ZnO-ZnCr2O4 // Научно-технический вестник информационных технологий, механики и оптики. 2025. Т. 25, № 2. С. 199–211. doi: 10.17586/2226-1494-2025-25-2-199-211


Аннотация
Введение. В настоящее время разработка новых нанокомпозитных материалов с улучшенными фотоката литическими и антибактериальными свойствами представляет собой актуальную задачу для экологически чистых технологий очистки воды и воздуха. В работе приведены результаты исследования порошковых нанокомпозитов ZnO-ZnCr2O4 и Cu/ZnO-ZnCr2O4, полученных полимерно-солевым методом. Метод. Для синтеза нанокомпозитов использовали растворы нитратов цинка и хрома с добавлением поливинилпирролидона в качестве растворимого органического полимера. Структура и морфология нанокомпозитов исследованы методами рентгенофазового анализа и электронной микроскопии, оптические и люминесцентные свойства — с использованием спектроскопических методов. Основные результаты. В результате термообработки при 550 °С получены дисперсные порошки нанокомпозитов, состоящие из частиц размером несколько микрометров, включающих гексагональные нанокристаллы оксида цинка со средним размером около16 нм и кристаллы шпинели ZnCr2O4. В спектре люминесценции композита Cu/ZnO-ZnCr2O4 в видимой области наблюдаются полосы флуоресценции, характерные для кристаллов ZnCr2O4 и структурных дефектов кристаллов оксида цинка. Установлено, что интенсивность фотогенерации синглетного кислорода нанокомпозитом Cu/ZnO ZnCr2O4 линейно зависит от плотности мощности возбуждающего излучения (длина волны 405 нм). Выявлена антибактериальная активность нанокомпозита Cu/ZnO-ZnCr2O4 в отношении бактерий Staphylococcus aureus ATCC 209P. Обсуждение. Полученные нанокомпозитные порошки могут быть использованы в системах очистки и обеззараживания воды и воздуха.

Ключевые слова: фотокатализ, нанокомпозит, ZnO, бактерия

Список литературы
1. Хомутинникова Л.Л., Мешковский И.К., Евстропьев С.К., Литвинов М.Ю., Быков Е.П., Плясцов С.А. Методика оптического детектирования метана волоконно-оптическом сенсором при применении фотокаталитического нанокомпозита ZnO-SnO2-Fe2O3 // Оптика и спектроскопия. 2023. Т. 131. № 3. С. 427–432. https://doi.org/10.21883/os.2023.03.55395.4525-23
2. Gaya U.I., Abdullah A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems // Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2008. V. 9. N 1. P. 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003
3. Uribe-López M.C., Hidalgo-López M.C., López-González R., Frías-Márquez D.M., Núñez-Nogueira G., Hernández-Castillo D., Alvarez-Lemus M.A. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties // Journal of Photochemistry and Photobiology A: Chemistry. 2021. V. 404. P. 112866. https://doi.org/10.1016/j.jphotochem.2020.112866
4. Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications // Renewable and Sustainable Energy Reviews. 2018. V. 81. Part 1. P. 536–551. https://doi.org/10.1016/j.rser.2017.08.020
5. Gusain R., Gupta K., Joshi P., Khatri O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review // Advances in Colloid and Interface Science. 2019. V. 272. P. 102009. https://doi.org/10.1016/j.cis.2019.102009
6. Gavrilova M., Gavrilova D., Evstropiev S., Shelemanov A., Bagrov I. Porous ceramic ZnO nanopowders: features of photoluminescence, adsorption and photocatalytic properties // Ceramics. 2023. V. 6. N 3. P. 1667–1681. https://doi.org/10.3390/ceramics6030103
7. Li R., Zhang L., Wang P. Rational design of nanomaterials for water treatment // Nanoscale. 2015. V. 7. N 41. P. 17167–17194. https://doi.org/10.1039/C5NR04870B
8. Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles // Langmuir. 2011. V. 27. N 7. P. 4020–4028. https://doi.org/10.1021/la104825u
9. Qi K., Cheng B., Yu J., Ho W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO // Journal of Alloys and Compounds. 2017. V. 727. P. 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
10. Saratovskii A.S., Bulyga D.V., Evstrop’ev S.K., Antropova T.V. Adsorption and photocatalytic activity of the porous glass–ZnO–Ag composite and ZnO–Ag nanopowder // Glass Physics and Chemistry. 2022. V. 48. N 1. P. 10–17. https://doi.org/10.1134/S1087659622010126
11. Wang T., Tian B., Han B., Ma D., Sun M., Hanif A., Xia D., Shang J. Recent advances on porous materials for synergetic adsorption and photocatalysis // Energy & Environmental Materials. 2022. V. 5. N 3. P. 711–730. https://doi.org/10.1002/eem2.12229
12. Rao L.S., Rao T.V., Naheed Sd., Rao P.V. Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation // Materials Chemistry and Physics. 2018. V. 203. P. 133–140. https://doi.org/10.1016/j.matchemphys.2017.09.048
13. Bhatia S., Verma N. Photocatalytic activity of ZnO nanoparticles with optimization of defects // Materials Research Bulletin. 2017. V. 95. P. 468–476. https://doi.org/10.1016/j.materresbull.2017.08.019
14. Guo L., Yang S., Yang C., Yu P., Wang J., Ge,p W., Wong G.K.L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties // Applied Physics Letters. 2000. V. 76. N 20. P. 2901–2903. https://doi.org/10.1063/1.126511
15. Chen X., Wu Z., Liu D., Gao Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes // Nanoscale Research Letters. 2017. V. 12. N 1. P. 143. https://doi.org/10.1186/s11671-017-1904-4
16.   Evstropiev S.K., Lesnykh L.V., Karavaeva A.V., Nikonorov N.V., Oreshkina K.V., Mironov L.Y., Maslennikov S.Y., Kolobkova E.V., Vasilyev V.N., Bagrov I.V. Intensification of photodecomposition of organics contaminations by nanostructured ZnO-SnO2 coatings prepared by polymer-salt method // Chemical Engineering and Processing – Process Intensification. 2019. V. 142. P. 107587. https://doi.org/10.1016/j.cep.2019.107587
17. Mimouni R., Askri B., Larbi T., Amlouk M., Meftah A. Photocatalytic degradation and photo-generated hydrophilicity of Methylene Blue over ZnO/ZnCr2O4 nanocomposite under stimulated UV light irradiation // Inorganic Chemistry Communications. 2020. V. 115. P. 107889. https://doi.org/10.1016/j.inoche.2020.107889
18. Mousavi Z., Soofivand F., Esmaeili-Zare M., Salavati-Niasari M., Bagheri S. ZnCr2O4 nanoparticles: facile synthesis, characterization and photocatalytic properties // Scientific Reports. 2016. V. 6. P. 20071. https://doi.org/10.1038/srep20071
19. Benrighi Y., Nasrallah N., Chaabane T., Sivasankar V., Darchen A., Baaloudj O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties // Optical Materials. 2021. V. 115. P. 111035. https://doi.org/10.1016/j.optmat.2021.111035
20. Peng C., Gao L. Optical and photocatalytic properties of spinel ZnCr2O4 nanoparticles synthesized by a hydrothermal route // Journal of the American Ceramic Society. 2008. V. 91. N 7. P. 2388–2390. https://doi.org/10.1111/j.1551-2916.2008.02417.x
21. Das S., Misra A.J., Rahman A.P.H., Das B., Jayabalan R., Tamhankar A.J., Mishra A., Lundborg C.S., Tripathy S.K. Ag@SnO2@ZnO core-shell nanocomposites assisted solar-photocatalysis downregulates multidrug resistance in Bacillus sp.: a catalytic approach to impede antibiotic resistance // Applied Catalysis B: Environmental. 2019. V. 259. P. 118065. https://doi.org/10.1016/j.apcatb.2019.118065
22. Lu Y.H., Xu M., Xu L.X. Zhang C.L., Zhang Q.P., Xu X.N., Xu S., Ostrikov K. Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method // Journal of Nanoparticle Research. 2015. V. 17. N 9. P. 350. https://doi.org/10.1007/s11051-015-3150-y
23. Lavín A., Sivasamy R., Mosquera E., Morel M.J. High proportion ZnO/CuO nanocomposites: Synthesis, structural and optical properties, and their photocatalytic behavior // Surfaces and Interfaces. 2019. V. 17. P. 100367. https://doi.org/10.1016/j.surfin.2019.100367
24.   Shelemanov A., Tincu A., Evstropiev S., Nikonorov N., Vasilyev V. Cu-doped porous ZnO-ZnAl2O4 nanocomposites synthesized by polymer-salt method for photocatalytic water purification // Journal of Composites Science. 2023. V. 7. N 7. P. 263. https://doi.org/10.3390/jcs7070263
25. Wang C., Wang X., Xu B. Q. Zhao, J.C., Mai B.X., Peng P., Sheng G.Y., Fu H.M. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation // Journal of Photochemistry and Photobiology A: Chemistry. 2004. V. 168. N 1-2. P. 47–52. https://doi.org/10.1016/j.jphotochem.2004.05.014
26. Li B., Wang Y.F. Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite // Superlattices and Microstructures. 2010. V. 47. N 5. P. 615–623. https://doi.org/10.1016/j.spmi.2010.02.005
27. Liu Y., Huang J., Feng X., Li H. Thermal-sprayed photocatalytic coatings for biocidal applications: a review // Journal of Thermal Spray Technology. 2021. V. 30. N 1-2. P. 1–24. https://doi.org/10.1007/s11666-020-01118-2
28. Riaz N., Hassan M., Siddique M.  Mahmood Q., Farooq U., Sarwar R., Khan M.S. Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: effect of synthesis and operational parameters // Environmental Science and Pollution Research. 2020. V. 27. N 3. P. 2992–3006. https://doi.org/10.1007/s11356-019-06727-1
29. Evstropiev S.K., Kislyakov I.M., Bagrov I.V., Belousova I.M. Stabilization of PbS quantum dots by high molecular polyvinylpyrrolidone // Polymers for Advanced Technologies. 2016. V. 27. N 3. P. 314–317. https://doi.org/10.1002/pat.3642
30. Дукельский К.В., Евстропьев С.К. Формирование защитных наноразмерных покрытий на основе Al2O3 (Al2O3-AlF3) на поверхности стекол // Оптический журнал. 2011. Т. 78. № 2. С. 71–81.
31. Gene S.A., Saion E., Shaari A.H., Kamarudin M.A., Al-Hada N.M. Kharazmi A. Structural, optical, and magnetic characterization of spinel zinc chromite nanocrystallines synthesised by thermal treatment method // Journal of Nanomaterials. 2014. V. 2014. P. 416765. https://doi.org/10.1155/2014/416765
32. Bokuniaeva A.O., Vorokh A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder // Journal of Physics: Conference Series. 2019. V. 1410. N 1. P. 012057. https://doi.org/10.1088/1742-6596/1410/1/012057
33. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallographica Section A. 1976. V. 32. N 5. P. 751–767. https://doi.org/10.1107/S0567739476001551
34. Wang X., Ahmad M., Sun H. Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications // Materials. 2017. V. 10.  N 11.  P. 1304. https://doi.org/10.3390/ma10111304
35. Børseth T.M., Svensson B.G., Kuznetsov A.Yu., Klason P., Zhao Q.X., Willander M. Identification of oxygen and zinc vacancy optical signals in ZnO // Applied Physics Letters. 2006. V. 89. N 26. P. 262112. https://doi.org/10.1063/1.2424641
36. Родный П.А., Черненко К.А., Веневцев И.Д. Механизмы люминесценции ZnO в видимой области спектра // Журнал технической физики. 2018. Т. 125. № 3. С. 357–363. https://doi.org/10.21883/OS.2018.09.46551.141-18
37. Cao B.Q., Cai W.P., Zeng H.B. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays // Applied Physics Letters. 2006. V. 88. N 16. P. 161101. https://doi.org/10.1063/1.2195694
38. Vempati S., Mitra J., Dawson P. One-step synthesis of ZnO nanosheets: a blue-white fluorophore // Nanoscale Research Letters. 2012. V. 7. P. 470. https://doi.org/10.1186/1556-276X-7-470
39. Ghosh D., Dutta U., Haque A., Mordvinova N.E., Lebedev O.I., Pal K., Gayen A., Seikh M.M., Mahata P. Ultra-high sensitivity of luminescent ZnCr2O4 nanoparticles toward nitroaromatic explosives sensing // Dalton Transactions. 2018. V. 47. N 14. P. 5011–5018. https://doi.org/10.1039/C8DT00047F
40. Nosaka Y., Daimon T., Nosaka A.Y., Murakami Y. Singlet oxygen formation in photocatalytic TiO2 aqueous suspension // Physical Chemistry Chemical Physics. 2004. V. 6. N 11. P. 2917–2918. https://doi.org/10.1039/b405084c
41. Abbasi A., Hamadanian M., Salavati-Niasari M., Mortazavi-Derazkola S. Facile size-controlled preparation of highly photocatalytically active ZnCr2O4 and ZnCr2O4/Ag nanostructures for removal of organic contaminants // Journal of Colloid and Interface Science. 2017. V. 500. P. 276–284. https://doi.org/10.1016/j.jcis.2017.04.003
42. Dumitru R., Manea F., Păcurariu C., Lupa L., Pop A., Cioabla A., Surdu A., Ianculescu A. Synthesis, characterization of nanosized ZnCr2O4 and its photocatalytic performance in the degradation of humic acid from drinking water // Catalysts. 2018. V. 8. N 5. P. 210. https://doi.org/10.3390/catal8050210
43. Khomutinnikova L., Evstropiev S., Meshkovskii I., Bagrov I., Kiselev V. Ceramic ZnO-SnO2-Fe2O3 powders and coatings -effective photogenerators of reactive oxygen species // Ceramics. 2023. V. 6. N 2. P. 886–897. https://doi.org/10.3390/ceramics6020051
44. Schweitzer C., Schmidt R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen // Chemical Reviews. 2003. V. 103. N 5. P. 1685–1758. https://doi.org/10.1021/cr010371d
45. Konstantinou I.K., Albanis T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review // Applied Catalysis B: Environmental. 2004. V. 49. N 1. P. 1–14. https://doi.org/10.1016/j.apcatb.2003.11.010
 


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2025 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика